Digital Phenotyping in Health Using Machine Learning Approaches: Scoping Review

Author:

Dlima Schenelle DaynaORCID,Shevade SantoshORCID,Menezes Sonia RebeccaORCID,Ganju AakashORCID

Abstract

Background Digital phenotyping is the real-time collection of individual-level active and passive data from users in naturalistic and free-living settings via personal digital devices, such as mobile phones and wearable devices. Given the novelty of research in this field, there is heterogeneity in the clinical use cases, types of data collected, modes of data collection, data analysis methods, and outcomes measured. Objective The primary aim of this scoping review was to map the published research on digital phenotyping and to outline study characteristics, data collection and analysis methods, machine learning approaches, and future implications. Methods We utilized an a priori approach for the literature search and data extraction and charting process, guided by the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews). We identified relevant studies published in 2020, 2021, and 2022 on PubMed and Google Scholar using search terms related to digital phenotyping. The titles, abstracts, and keywords were screened during the first stage of the screening process, and the second stage involved screening the full texts of the shortlisted articles. We extracted and charted the descriptive characteristics of the final studies, which were countries of origin, study design, clinical areas, active and/or passive data collected, modes of data collection, data analysis approaches, and limitations. Results A total of 454 articles on PubMed and Google Scholar were identified through search terms associated with digital phenotyping, and 46 articles were deemed eligible for inclusion in this scoping review. Most studies evaluated wearable data and originated from North America. The most dominant study design was observational, followed by randomized trials, and most studies focused on psychiatric disorders, mental health disorders, and neurological diseases. A total of 7 studies used machine learning approaches for data analysis, with random forest, logistic regression, and support vector machines being the most common. Conclusions Our review provides foundational as well as application-oriented approaches toward digital phenotyping in health. Future work should focus on more prospective, longitudinal studies that include larger data sets from diverse populations, address privacy and ethical concerns around data collection from consumer technologies, and build “digital phenotypes” to personalize digital health interventions and treatment plans.

Publisher

JMIR Publications Inc.

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3