Deep Learning Transformer Models for Building a Comprehensive and Real-time Trauma Observatory: Development and Validation Study

Author:

Chenais GabrielleORCID,Gil-Jardiné CédricORCID,Touchais HélèneORCID,Avalos Fernandez MartaORCID,Contrand BenjaminORCID,Tellier EricORCID,Combes XavierORCID,Bourdois LoickORCID,Revel PhilippeORCID,Lagarde EmmanuelORCID

Abstract

Background Public health surveillance relies on the collection of data, often in near-real time. Recent advances in natural language processing make it possible to envisage an automated system for extracting information from electronic health records. Objective To study the feasibility of setting up a national trauma observatory in France, we compared the performance of several automatic language processing methods in a multiclass classification task of unstructured clinical notes. Methods A total of 69,110 free-text clinical notes related to visits to the emergency departments of the University Hospital of Bordeaux, France, between 2012 and 2019 were manually annotated. Among these clinical notes, 32.5% (22,481/69,110) were traumas. We trained 4 transformer models (deep learning models that encompass attention mechanism) and compared them with the term frequency–inverse document frequency associated with the support vector machine method. Results The transformer models consistently performed better than the term frequency–inverse document frequency and a support vector machine. Among the transformers, the GPTanam model pretrained with a French corpus with an additional autosupervised learning step on 306,368 unlabeled clinical notes showed the best performance with a micro F1-score of 0.969. Conclusions The transformers proved efficient at the multiclass classification of narrative and medical data. Further steps for improvement should focus on the expansion of abbreviations and multioutput multiclass classification.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3