Leveraging Machine Learning to Develop Digital Engagement Phenotypes of Users in a Digital Diabetes Prevention Program: Evaluation Study

Author:

Rodriguez Danissa VORCID,Chen JiORCID,Viswanadham Ratnalekha V NORCID,Lawrence KatharineORCID,Mann DevinORCID

Abstract

Background Digital diabetes prevention programs (dDPPs) are effective “digital prescriptions” but have high attrition rates and program noncompletion. To address this, we developed a personalized automatic messaging system (PAMS) that leverages SMS text messaging and data integration into clinical workflows to increase dDPP engagement via enhanced patient-provider communication. Preliminary data showed positive results. However, further investigation is needed to determine how to optimize the tailoring of support technology such as PAMS based on a user’s preferences to boost their dDPP engagement. Objective This study evaluates leveraging machine learning (ML) to develop digital engagement phenotypes of dDPP users and assess ML’s accuracy in predicting engagement with dDPP activities. This research will be used in a PAMS optimization process to improve PAMS personalization by incorporating engagement prediction and digital phenotyping. This study aims (1) to prove the feasibility of using dDPP user-collected data to build an ML model that predicts engagement and contributes to identifying digital engagement phenotypes, (2) to describe methods for developing ML models with dDPP data sets and present preliminary results, and (3) to present preliminary data on user profiling based on ML model outputs. Methods Using the gradient-boosted forest model, we predicted engagement in 4 dDPP individual activities (physical activity, lessons, social activity, and weigh-ins) and general activity (engagement in any activity) based on previous short- and long-term activity in the app. The area under the receiver operating characteristic curve, the area under the precision-recall curve, and the Brier score metrics determined the performance of the model. Shapley values reflected the feature importance of the models and determined what variables informed user profiling through latent profile analysis. Results We developed 2 models using weekly and daily DPP data sets (328,821 and 704,242 records, respectively), which yielded predictive accuracies above 90%. Although both models were highly accurate, the daily model better fitted our research plan because it predicted daily changes in individual activities, which was crucial for creating the “digital phenotypes.” To better understand the variables contributing to the model predictor, we calculated the Shapley values for both models to identify the features with the highest contribution to model fit; engagement with any activity in the dDPP in the last 7 days had the most predictive power. We profiled users with latent profile analysis after 2 weeks of engagement (Bayesian information criterion=−3222.46) with the dDPP and identified 6 profiles of users, including those with high engagement, minimal engagement, and attrition. Conclusions Preliminary results demonstrate that applying ML methods with predicting power is an acceptable mechanism to tailor and optimize messaging interventions to support patient engagement and adherence to digital prescriptions. The results enable future optimization of our existing messaging platform and expansion of this methodology to other clinical domains. Trial Registration ClinicalTrials.gov NCT04773834; https://www.clinicaltrials.gov/ct2/show/NCT04773834 International Registered Report Identifier (IRRID) RR2-10.2196/26750

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3