Detecting Mental Health Behaviors Using Mobile Interactions: Exploratory Study Focusing on Binge Eating

Author:

Vega JulioORCID,Bell Beth TORCID,Taylor CaitlinORCID,Xie JueORCID,Ng HeidiORCID,Honary MahsaORCID,McNaney RoisinORCID

Abstract

Background Binge eating is a subjective loss of control while eating, which leads to the consumption of large amounts of food. It can cause significant emotional distress and is often accompanied by purging behaviors (eg, meal skipping, overexercising, or vomiting). Objective The aim of this study was to explore the potential of mobile sensing to detect indicators of binge-eating episodes, with a view toward informing the design of future context-aware mobile interventions. Methods This study was conducted in 2 stages. The first involved the development of the DeMMI (Detecting Mental health behaviors using Mobile Interactions) app. As part of this, we conducted a consultation session to explore whether the types of sensor data we were proposing to capture were useful and appropriate, as well as to gather feedback on some specific app features relating to self-reporting. The second stage involved conducting a 6-week period of data collection with 10 participants experiencing binge eating (logging both their mood and episodes of binge eating) and 10 comparison participants (logging only mood). An optional interview was conducted after the study, which discussed their experience using the app, and 8 participants (n=3, 38% binge eating and n=5, 63% comparisons) consented. Results The findings showed unique differences in the types of sensor data that were triangulated with the individuals’ episodes (with nearby Bluetooth devices, screen and app use features, mobility features, and mood scores showing relevance). Participants had a largely positive opinion about the app, its unobtrusive role, and its ease of use. Interacting with the app increased participants’ awareness of and reflection on their mood and phone usage patterns. Moreover, they expressed no privacy concerns as these were alleviated by the study information sheet. Conclusions This study contributes a series of recommendations for future studies wishing to scale our approach and for the design of bespoke mobile interventions to support this population.

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health

Reference103 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Sensor-Captured Patient-Generated Data to Support Clinical Decision-making in PTSD Therapy;Proceedings of the ACM on Human-Computer Interaction;2024-04-17

2. I’ve learned a lot about myself this year’: Young student women’s perceptions of their cumulative use of digital fitness technologies across the Covid-19 pandemic;Journal of Health Psychology;2024-01-27

3. GLOBEM;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2022-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3