A New Pattern Mining Algorithm for Analytics of Real-Time Internet of Things Data

Author:

Abstract

The rise of IoT Real time data has led to new demands for mining systems to learn complex models with millions to billions of parameters, which promise adequate capacity to digest massive datasets and offer powerful predictive analytics. To support Big Data mining, high-performance powerful computing platforms are required, which impose regular designs to unleash the full power of the Big Data. Pattern mining poses a lot of interesting research problems and there are many areas that are still not well understood. The specifically very elementary challenges are to understand the meaningful data from the junk data that anticipated into the internet, refer as “Smart Data”. Eighty-five percent of the entire data are noisy or meaningless. It is a very tough often assigned to verify and separate to refine the data from the noisy junk. Researchers’ are proposing an algorithm of distributed pattern mining to give some sort of solution of the heterogeneity, scaling and hidden Big Data problems. The algorithm has evaluated in parameters like cost, speed, space and overhead. Researchers’ used IoT as the source of Big Data that generates heterogeneous Big Data. In this paper, we are representing the results of all tests proved that; the new method gives accurate results and valid outputs based on verifying them with the results of the other valid methods. Also, the results show that, the new method can handle the big datasets and decides the frequent pattern and produces the associate rule sets faster than that of the conventional methods and less amount of memory storage for processing. Overall the new method has a challenging performance as regard the memory storage and the speed of processing as compared to the conventional methods of frequent pattern mining like Apriori and FP-Growth techniques.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review Survey of the Algorithms Used for the Blockchain Technology;Soft Computing for Problem Solving;2023

2. Multilayered Architecture for Secure Communication and Transmission for Internet of Things;Advances in Intelligent Systems and Computing;2022-09-30

3. A Framework for Multi-Sensor Data fusion in the Context of IoT Smart City Parking Data;IOP Conference Series: Materials Science and Engineering;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3