SOLID LIPID NANOPARTICLES: A REVIEW ON DIFFERENT TECHNIQUES AND APPROACHES TO TREAT BREAST CANCER

Author:

GAJBHIYE SHILPA A.ORCID,PATIL MORESHWAR P.

Abstract

Breast cancer, the most common malignancy among women, is also the second-leading cause of cancer deaths all over the world. As commonly used chemotherapy drugs, which are given systematically, causes toxicity not only to cancerous cells but also to proliferating normal cells. Similarly, drug resistance leads to drastic side effects and treatment failure. Thus arises the need for improving the therapeutic index of anticancer drugs. Owing to these failures, nanotechnology holds significant promises. Using keywords like multi-drug resistance, effective targeting, therapeutics, intracellular pathways, efficacy, and breast cancer, references were looked up from specialised databases including Elsevier, Pubmed, and Cambridge from the year 1994 to 2023. This review was supplemented by a few references from Springer Nature and pertinent data from an online source. Along with online articles from Medscape, StatPearls, and The Lancet Respiratory Medicine, it was excellent. Supported literature was used to overcome these challenges; therapeutic drugs are encapsulated in nanoparticles. Concurrently, solid lipid nanoparticles (SLN), with their few merits, like enhancing the therapeutic profile, overcoming multidrug resistance, providing a targeted approach, and serving as a controlled release, have gained the attention of researchers. SLNs confine significant promises, overcome these challenges, and help to possibly deliver the drug to a specific part of the body, particular organ, or tissue by an actively or passively targeted delivery system, which will be beneficial in the diagnosis and treatment of breast cancer. The objective of this article is to highlight the factors that influence the targeted drug delivery system and resultant bioavailability and also provide updates on recent research and various approaches used for breast drug delivery systems.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3