FORMULATION AND EVALUATION OF FAMOTIDINE MICRO BALLOONS WITH ENHANCED ANTI-ULCER ACTIVITY

Author:

Kumar Ritesh,Gautam Pawan Kumar,Chandra Amrish

Abstract

Objective: The aim of the present study was to formulate and optimize famotidine loaded micro balloons for enhancing bioavailability, increasing gastric residence time of drug and to achieve sustained release in the stomach.Methods: Microballoons were prepared using emulsion solvent diffusion method using HPMC K4M as the polymer. All the formulated microspheres were subjected to various evaluation parameters such as % drug entrapment, micromeritics properties, % buoyancy and in vitro drug release studies. The formulation was optimized using 32 full factorial design. Optimized formulation was subjective to in vivo floating (X-ray) and in vivo antiulcer studies.Results: The microballoons were smooth and spherical in shape and were porous in nature due to hollow cavity. Sustained/controlled release of drug was observed for more than 12 h. based on the results of % drug entrapment, in vitro drug release and % buoyancy studies, formulation F6 was selected as optimized formulation. The release kinetics of optimized formulation followed Higuchi model and mechanism of release was non-Fickian diffusion. Examination of the X-ray radiographic images taken during the study indicated that the optimized formulation remained buoyant and uniformly distributed in the gastric contents for a long period. In ethanol-induced ulcer model, drug-loaded microballoons treated group showed significant ulcer protection index of 83.26% as compared to the marketed brand of famotidine 76. 09% and untreated control group.Conclusion: Famotidine-loaded floating micro balloons were successfully prepared and prove to be useful for the prolonged gastric residence of the drug, better bioavailability, patient compliance and anti-ulcer activity.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

Reference27 articles.

1. Tripathi KD. Essentials of medical pharmacology. 7th ed. New Delhi, India: Jaypee Brothers Medical Publishers; 2014.

2. Kumar R, Chandra A, Gautam PK. Development and validation of UV spectrophotometric method for quantitative estimation of famotidine in bulk and tablet dosage form. Asian J Pharm Clin Res 2017;10:381-5.

3. United States Pharmacopoeia 32, National Formulary 27, Rockville MD: United States Pharma copoeial Convention 2009;2:2342-5.

4. Kumar R, Kamboj S, Chandra A, Gautam PK. Microballoons: an advance avenue for gastro-retentive drug delivery system-a review. UK J Pharm Biosci 2016;4:19-30.

5. Kumar R, Gupta S, Chandra A, Gautam PK. Floating tablets: a realistic approach in gastro-retentive drug delivery system. Int J Pharm Res Bio Sci 2016;5:1-20.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Formulation Development and Evaluation of Floating Beads of Propranolol Hydrochloride;Research Journal of Pharmaceutical Dosage Forms and Technology;2024-05-28

2. Formulation Development and Evaluation of Floating Beads of Propranolol Hydrochloride;Asian Journal of Research in Pharmaceutical Sciences;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3