MOLECULAR DOCKING OF HYRTIMOMINE A-K FROM MARINE SPONGE HYRTIOS SPP. AS ANTICANCER TARGET OF PHOSPHOINOSITIDE-DEPENDENT KINASE 1

Author:

RAMA ADIGA

Abstract

Objective: The hyrtimomine A-K class of indole-based compounds extracted from Hyrtios spp. of sponges from the sea has not been studied for their anticancer properties. Phosphoinositide-dependent kinase 1 (PDK1) is a master regulator of many types of cancer. Compounds currently targeting PDK1 are currently of poor specificity and solubility. Hence, molecular docking to look for new compounds inhibiting PDK1 from the marine environment was carried out. Methods: Target selection for ligands hyrtimomine A-K was done using PharmMapper tool. Molecular docking was done using iGEMDOCK 2.1, a generic evolutionary method of docking. Site moiety mapping was done in SimMap to extract the anchor preference of the top hits. Comparison of ligand binding energies, pharmacokinetic properties with lead compound BX-517 was carried out. Results: Hyrtimomine B, C, D, and G were top hits using iGEMDOCK. The highest score was obtained for hyrtimomine C. Van der Waals interaction at T222 and V96 and hydrogen bond interaction at K111 determined pocket stability. The solubility properties of the compound showed higher score for hyrtimomine C. The conserved features of hyrtimomine C were then compared with the crystal structure of lead compound (BX-517, which was not developed further due to poor solubility and bioavailability). The pharmacokinetic properties of hyrtimomine C were superior to BX-517 and had better solubility and drug-likeness score, hence, may be a candidate structure for drug development. Conclusion: The unique azapeno indole structure of hyrtimomine C highlighted the mode of binding and residues in binding site.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmacology (medical),Pharmaceutical Science,Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3