T cell genetic background determines default T helper phenotype development in vitro.

Author:

Hsieh C S1,Macatonia S E1,O'Garra A1,Murphy K M1

Affiliation:

1. Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110.

Abstract

A host's ability to resist certain pathogens such as Leishmania major can depend upon the phenotype of T helper (Th) subset that develops. Different murine genetic backgrounds are known to significantly alter the direction of Th subset development, although the cellular basis of this influence is poorly understood. To examine the basis of this effect we used an in vitro alpha/beta-T cell receptor (TCR) transgenic system for analysis of Th phenotype development. To control for TCR usage, we derived the DO11.10 alpha/beta-TCR transgene in several genetic backgrounds. Our findings suggest that the effects of genetic background on Th phenotype development reside within the T cell, and not the antigen-presenting cell compartment. Transgenic T cells from both the B10.D2 and BALB/c backgrounds showed development toward either the Th1 or Th2 phenotype under the strong directing influence of interleukin (IL) 12 and IL4, respectively. However, when T cells were activated in vitro under neutral conditions in which exogenous cytokines were not added, B10.D2-derived T cells acquired a significantly stronger Th1 phenotype than T cells from the BALB/c background, correspondent with in vivo Th responses to Leishmania in these strains. Importantly, these cytokine differences resulted in distinct functional properties, because B10.D2- but not BALB/c-derived T cells could induce macrophage production of nitric oxide, an important antimicrobial factor. Thus, the genetically determined default Th phenotype development observed in vitro may correspond to in vivo Th subset responses for pathogens such as Leishmania which do not initiate strong Th phenotype-directing signals.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3