Antitumor and antimetastatic activity of interleukin 12 against murine tumors.

Author:

Brunda M J1,Luistro L1,Warrier R R1,Wright R B1,Hubbard B R1,Murphy M1,Wolf S F1,Gately M K1

Affiliation:

1. Department of Oncology, Hoffmann-La Roche Inc., Nutley, New Jersey 07110.

Abstract

It has recently been demonstrated that in vivo administration of murine interleukin 12 (IL-12) to mice results in augmentation of cytotoxic natural killer (NK)/lymphocyte-activated killer cell activity, enhancement of cytolytic T cell generation, and induction of interferon gamma secretion. In this study, the in vivo activity of murine IL-12 against a number of murine tumors has been evaluated. Experimental pulmonary metastases or subcutaneous growth of the B16F10 melanoma were markedly reduced in mice treated intraperitoneally with IL-12, resulting in an increase in survival time. The therapeutic effectiveness of IL-12 was dose dependent and treatment of subcutaneous tumors could be initiated up to 14 d after injection of tumor cells. Likewise, established experimental hepatic metastases and established subcutaneous M5076 reticulum cell sarcoma and Renca renal cell adenocarcinoma tumors were effectively treated by IL-12 at doses which resulted in no gross toxicity. Local peritumoral injection of IL-12 into established subcutaneous Renca tumors resulted in regression and complete disappearance of these tumors. IL-12 was as effective in NK cell-deficient beige mice or in mice depleted of NK cell activity by treatment with antiasialo GM1, suggesting that NK cells are not the primary cell type mediating the antitumor effects of this cytokine. However, the efficacy of IL-12 was greatly reduced in nude mice suggesting the involvement of T cells. Furthermore, depletion of CD8+ but not CD4+ T cells significantly reduced the efficacy of IL-12. These results demonstrate that IL-12 has potent in vivo antitumor and antimetastatic effects against murine tumors and demonstrate as well the critical role of CD8+ T cells in mediating the antitumor effects against subcutaneous tumors.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3