AN EXAMINATION OF THE CYTOTOXIC EFFECTS OF SILICA ON MACROPHAGES

Author:

Allison A. C.1,Harington J. S.1,Birbeck M.1

Affiliation:

1. From the National Institute for Medical Research, and the Chester Beatty Research Institute, London, England

Abstract

Effects of silica, diamond dust, and carrageenan on mouse macrophages were studied by phase-contrast cine-micrography, electron microscopy, histochemical techniques for lysosomal enzymes and measurements of the release of lysosomal enzymes into the culture medium. All added materials were rapidly taken up into phagosomes, to which lysosomes became attached. In all cases lysosomal enzymes were discharged into the phagosomes to form secondary lysosomes. Within 24 hr most of the silica particles and enzyme had escaped from the secondary lysosomes and lysosomal enzymes were found in the culture media. Most macrophages were killed by this time. With nontoxic particles (diamond dust, aluminium-coated silica, or silica in the presence of the protective agent polyvinyl-pyridine-N-oxide, PVPNO) ingested particles and lysosomal enzymes were retained within the secondary lysosomes for a much longer time, and cytotoxic effects were considerably delayed or absent altogether. It is concluded that silica particles are toxic because they are efficiently taken up by macrophages and can then react relatively rapidly with the membranes surrounding the secondary lysosomes. The particles and lytic enzymes can then escape into the cytoplasm, producing general damage, and thence into the culture medium. It is suggested that hydrogen bonding of silicic acid with lipid and protein constituents of the membrane accounts for the induced permeability. Protective agents such as PVPNO are retamed in lysosomes and preferentially form hydrogen bonds with silicic acid. Carrageenan is demonstrable within macrophages by its metachromatic reaction. It brings about release of enzymes from secondary lysosomes, but much more slowly than does silica. Silica released from killed macrophages is as cytotoxic as the original preparation. It is suggested that repeated cycles of macrophage killing in vivo leads to the mobilization of fibroblasts and fibrogenesis characterizing the disease silicosis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3