Oxygen modulates growth of human cells at physiologic partial pressures.

Author:

Balin A K,Fisher A J,Carter D M

Abstract

We have examined the growth of human diploid fibroblasts (WI-38 and IMR90) as a function of initial seeding density and oxygen tension. Cells at young and mid-passage levels were subcultivated in Dulbecco's modified Eagle's medium with 10% fetal bovine serum at 0.005, 0.01, 0.03, 0.1, 0.3, 1, and 2 X 10(4) cells/cm2. Flasks were equilibrated before and after seeding with 1 of 10 gas mixtures containing the desired oxygen tension (9-591 mm Hg) and placed in incubators that measure and maintain a preset oxygen tension. The partial pressure of oxygen (PO2) in media of all flasks was determined at harvest. Cells were shielded from light of wavelength less than 500 nm. Cell growth varied inversely with oxygen tension and seeding density. At 50 cells/cm2, growth was maximal at PO2 9 and 16 mm Hg. Growth was progressively inhibited as the oxygen tension was increased. The population doubling increase at 14 d was 8.6 for PO2 9 and 16 mm Hg, 5.8 for PO2 42 mm Hg, 3.8 for PO2 78 mm Hg, 3.8 for PO2 104 mm Hg, and 3 for PO2 138 mm Hg. As the seeding density was increased, the differences in growth at PO2 less than 140 mm Hg were progressively minimized, such that at seeding densities of 10(4) cells/cm2 there was little difference in the rate of exponential growth or the final saturation density of cells cultivated between PO2 9 and 96 mm Hg. At all seeding densities tested, growth was progressively inhibited when the PO2 was increased greater than 140 mm Hg. The seeding density dependence of oxygen's influence on cellular growth is not explained by oxygen consumption of higher density cultures. Oxygen acts directly on the cells and not by destroying some essential medium component. We have found that oxygen regulates the growth of human cells under pressures of oxygen physiologic to humans, and that oxygen toxicity contributes to the seeding density dependence of cellular growth commonly seen in cell culture.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3