LIGHT–HVEM signaling in keratinocytes controls development of dermatitis

Author:

Herro Rana1,Shui Jr-Wen2ORCID,Zahner Sonja2ORCID,Sidler Daniel1,Kawakami Yuko3ORCID,Kawakami Toshiaki34,Tamada Koji5,Kronenberg Mitchell26,Croft Michael14ORCID

Affiliation:

1. Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, CA

2. Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA

3. Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA

4. Department of Medicine, University of California, San Diego, La Jolla, CA

5. Department of Immunology, Yamaguchi University School of Medicine, Yamaguchi, Japan

6. Division of Biology, University of California, San Diego, La Jolla, CA

Abstract

Dermatitis is often associated with an allergic reaction characterized by excessive type 2 responses leading to epidermal acanthosis, hyperkeratosis, and dermal inflammation. Although factors like IL-4, IL-13, and thymic stromal lymphopoietin (TSLP) are thought to be instrumental for the development of this type of skin disorder, other cytokines may be critical. Here, we show that the tumor necrosis factor (TNF) superfamily protein LIGHT (homologous to lymphotoxin, exhibits inducible expression, and competes with HSV glycoprotein D for binding to HVEM, a receptor expressed on T lymphocytes) is required for experimental atopic dermatitis, and LIGHT directly controls keratinocyte hyperplasia, and production of periostin, a matricellular protein that contributes to the clinical features of atopic dermatitis as well as other skin diseases such as scleroderma. Mice with a conditional deletion of the LIGHT receptor HVEM (herpesvirus entry mediator) in keratinocytes phenocopied LIGHT-deficient mice in exhibiting reduced epidermal thickening and dermal collagen deposition in a model of atopic dermatitis driven by house dust mite allergen. LIGHT signaling through HVEM in human epidermal keratinocytes directly induced proliferation and periostin expression, and both keratinocyte-specific deletion of HVEM or antibody blocking of LIGHT–HVEM interactions after disease onset prevented expression of periostin and limited atopic dermatitis symptoms. Developing reagents that neutralize LIGHT–HVEM signaling might be useful for therapeutic intervention in skin diseases where periostin is a central feature.

Funder

National Institutes of Health

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3