In vivo incisional wound healing augmented by platelet-derived growth factor and recombinant c-sis gene homodimeric proteins.

Author:

Pierce G F1,Mustoe T A1,Senior R M1,Reed J1,Griffin G L1,Thomason A1,Deuel T F1

Affiliation:

1. Department of Medicine, Jewish Hospital, Washington University Medical Center, St. Louis, Missouri 63110.

Abstract

Human platelet-derived growth factor (hPDGF) is likely to be important in stimulating tissue repair, based upon its in vivo chemotactic and stimulatory activities for inflammatory cells and fibroblasts and upon the presence of PDGF and related proteins in platelets, macrophages, and activated fibroblasts, cell types that make up the milieu of the healing wound. Recombinant human c-sis (rPDGF-B), homodimers of the B chain of PDGF, were compared with hPDGF in vitro. rPDGF-B was immunologically similar to hPDGF and, at identical concentrations, similar to hPDGF in stimulating fibroblast mitogenesis and chemotaxis of polymorphonuclear leukocytes, monocytes, and fibroblasts. Purified hPDGF and rPDGF-B were also tested in vivo for potency in a model of tissue repair using a linear incision wound through rat dermis. A single application of hPDGF or rPDGF-B (2-20 micrograms/wound) in a slow release vehicle at the time of wounding resulted in a dose-dependent, statistically highly significant increase of breaking strength of treated wounds. Wound healing in animals treated with rPDGF-B was 170% stronger and accelerated by 2 d during the first week over control wounds and by 4-6 d over the next 2 wk. Histologic evaluation of growth factor-treated wounds correlated the in vitro chemotactic activity and the accelerated healing of wounds with a striking inflammatory cell infiltrate early after wounding, markedly increased formation of granulation tissue by 4-d, and increased fibrosis by 14 d in comparison to control wounds. The results thus demonstrate that rPDGF-B is fully active in in vitro tests of mitogenesis and chemotaxis and, for the first time, demonstrate directly that PDGF significantly advances wound healing in incisional wounds of experimental animals.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 222 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3