Accessory cell-T lymphocyte interactions. Antigen-dependent and -independent clustering.

Author:

Inaba K,Steinman R M

Abstract

Previous work documented the capacity of dendritic cells (DC) to stimulate primary immune responses and to physically cluster with the responding lymphocytes. Rapid cell-cell aggregation assays were used here to study the interaction of DC and other types of APC with T lymphocytes. Graded doses of APC were sedimented with T cells that had been primed to alloantigens, soluble proteins, or lectin, and then labeled with carboxyfluorescein diacetate. The number of clustered T cells was measured after 10 min at 4 or 37 degrees C. At 4 degrees, binding was antigen-dependent and included greater than 50% of the added T cells. Clustering was mediated by all types of APC tested, including DC, macrophages, B lymphocytes, and fresh Langerhans cells, although DC were the most effective. Specificity was evident in the findings that alloreactive T lymphoblasts bound to allogeneic but not syngeneic APC; KLH- and OVA-reactive T cells bound to syngeneic APC in the presence of specific protein: and Con A blasts needed lectin to cluster. A 30 min pretreatment with chloroquine, a drug known to inhibit APC activity, markedly blocked the specific binding of alloreactive and protein-specific T blasts at 4 degrees C. Since Lyt-2- alloreactive blasts should specifically recognize Ia, presentation of Ia seems to be altered by chloroquine. Binding assays at 37 degrees C gave similar results to those performed at 4 degrees C, with one exception. When DC were used as APC, striking antigen-independent clustering occurred. DC could efficiently cluster primed T cells in the absence of alloantigen, soluble protein, or lectin. We suggest that antigen-independent binding contributes to the distinctive capacity of DC to prime T cells in the afferent limb of the immune response, whereas antigen-dependent binding between other APC and sensitized lymphocytes is critical in the efferent limb.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3