A RECEPTOR FOR ANTIBODY ON B LYMPHOCYTES

Author:

Basten A.1,Warner N. L.1,Mandel T.1

Affiliation:

1. From the Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia

Abstract

Binding of antibody to the surface of B lymphocytes was shown to involve the Fc piece of the immunoglobulin molecule. This property was not shared equally by all immunoglobulin classes as revealed by direct binding and inhibition studies. Total IgG globulin was found to label cells more heavily than IgM, and IgG1-containing fractions more heavily than IgG2 fractions lacking IgG1. The ability of various purified myeloma proteins to inhibit attachment of antibody to B cells was examined. Pretreatment of B cells with excess IgG2a, IgA, or light chain proteins failed to inhibit, whereas IgG1 proteins and to a lesser extent Ig2b and IgM proteins at the same concentrations did so. At lower protein concentrations, IgG1 myeloma protein alone retained the capacity to inhibit binding. The conclusion was reached that the receptor on B cells for antibody has a marked predilection for the IgG1 class. Although IgM and IgG2b antibody may bind, they do so with lower avidity and probably in insignificant amounts if IgG1 antibody is present in excess. No evidence was found to implicate complement in the binding process. For example, heat-inactivated sera at high dilution retained the ability to label B cells, while the use of purified low molecular weight anticomplementary factor, a potent inhibitor of C'3, did not interfere with the formation of the bond between antibody and cell surface. The failure of anti-mouse immunoglobulin F(ab)'2 fragments to prevent access of antibody to B cells implied that the antibody-binding receptor and antigen-binding (immunoglobulin) receptor are discrete entities on the B cell membrane. Despite this, a marked similarity between their surface distribution was observed on electron microscopy. The antibody-binding receptor was shown to be a marker for mature B cells. It did not appear to be present on hematopoietic precursor stem cells and was lost during differentiation to antibody-forming cells.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3