MOLECULAR ANALYSIS OF THE MEMBRANE ATTACK MECHANISM OF COMPLEMENT

Author:

Kolb William P.1,Haxby James A.1,Arroyave Carlos M.1,Müller-Eberhard Hans J.1

Affiliation:

1. From the Department of Experimental Pathology, Scripps Clinic and Research Foundation, La Jolla, California 92037

Abstract

The molecular arrangement of the membrane attack mechanism of complement was explored. The molar ratios of the components within the C5-9 assembly on the target cell surface were determined using human complement proteins in highly purified and radiolabeled form. With the aid of monospecific complement antisera it was possible to probe the spatial relationships between the components of the assembly. C5 and C6, in the presence of C7, were bound to EAC1-3 in equimolar quantities irrespective of the amounts and the relative proportions of C5, C6, and C7 offered. The amount of C8 bound to EAC1-7 increased with input and at saturation of all C8 binding sites the molar ratio of bound C8/bound C5 approached 1.0. Uptake of C9 by EAC1-8 increased with input and at saturation of all C9 binding sites the molar ratio of bound C9/bound C8 became 6.0. However, calculations suggest that the binding of three C9 molecules to one C8 molecule is sufficient to achieve a full hemolytic effect. Evidence was obtained indicating that binding and hemolytic function of C9 depends upon cooperative interaction of multiple C9 molecules. Binding of C8 to EAC1-7 and the generation of hemolytic C8 sites were inhibited by antibody to either C5, C6, or C7. Uptake of C9 by EAC1-8 and the generation of hemolytic C9 sites were strongly inhibited by anti-C8 and to a lesser degree by anti-C5. Binding of C9 (but not hemolysis) was also reduced by antibody to C6 or C7. The data are consistent with the concept that the fully assembled membrane attack mechanism of complement consists of a decamolecular complex: a trimolecular arrangement composed of C5, C6, and C7 forms the binding site for one C8 molecule which in turn furnishes binding sites for six C9 molecules, saturation of three sites apparently being sufficient for expression of full cytolytic activity of the complex. This work made it possible to design a simple molecular model.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3