Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b-8 assembly

Author:

Podack ER,Tschoop J,Muller-Eberhard HJ

Abstract

Evidence has been presented suggesting that during assembly of the membrane attack complex (MAC) of complement, the C5b-8 complex induces polymerization of C9. The C9 polymer was detected by sodium dodecyl sulfate (SDS) gel electrophoresis of MAC isolated from complement-lysed erythrocytes. It resembled the previously described polymerized C9 (poly C9) produced from isolated monomeric C9 by prolonged incubation at 37 degrees C in that it was resistant to dissociation by SDS and reducing agents and had an apparent molecular weight of approximately 1.1 million. The presence of poly C9 in the MAC was further supported by the expression of identical neoantigens by the MAC and poly C9 and by the high C9 content of the MAC relative to its other constituents. Isolated C8 in solution was found to have a single C9-binding site. In mixture, the two proteins formed a reversible equimolar complex that had a sedimentation coefficient of 10.5S. In contrast, a single, cell-bound C5b-8 complex was found to bind up to 12-15 C9 molecules and clusters of C5b- 8 bound 6-8 C9 molecules per C8 molecule. In either case, typical ultrastructural membrane lesions were observed, suggesting that the membrane lesion is identical with the tubular poly C9 consisting of 12-16 C9 molecules, and that the MAC can have either the composition (C5b-8)polyC9 or (CSb-8)(2)polyC9. When C9 input was restricted so that the molar C9/C8 ratio was less than or equal to 3, C9-induced aggregates of C5b-8 were observed but virtually no circular membrane lesions were found. We suggest, therefore, that C9, at low dosage, causes cross-linking of multiple C5b-8 complexes within the target membrane and that, at high dosage, C9 is polymerized by C5b-8 to form a transmembrane channel within the MAC assembly. It is primarily the C9 polymer that evokes the ultrastructural image of the MAC or of membrane lesions caused by complement.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3