Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity.

Author:

Corry D B1,Folkesson H G1,Warnock M L1,Erle D J1,Matthay M A1,Wiener-Kronish J P1,Locksley R M1

Affiliation:

1. Department of Medicine, University of California San Francisco 94143-0654, USA.

Abstract

Reversible airway hyperreactivity underlies the pathophysiology of asthma, yet the precise mediators of the response remain unclear. Human studies have correlated aberrant activation of T helper (Th) 2-like effector systems in the airways with disease. A murine model of airway hyperreactivity in response to acetylcholine was established using mice immunized with ovalbumin and challenged with aerosolized antigen. No airway hyperractivity occurred in severe combined immunodeficient mice. Identically immunized BALB/c mice developed an influx of cells, with a predominance of eosinophils and CD4+ T cells, into the lungs and bronchoalveolar lavage fluid at the time that substantial changes in airway pressure and resistance were quantitated. Challenged animals developed marked increases in Th2 cytokine production, eosinophil influx, and serum immunoglobulin E levels. Neutralization of interleukin (IL) 4 using monoclonal antibodies administered during the period of systemic immunization abrogated airway hyperractivity but had little effect on the influx of eosinophils. Administration of anti-IL-4 only during the period of the aerosol challenge did not affect the subsequent response to acetylcholine. Finally, administration of anti-IL-5 antibodies at levels that suppressed eosinophils to < 1% of recruited cells had no effect on the subsequent airway responses. BALB/c mice had significantly greater airway responses than C57BL/6 mice, consistent with enhanced IL-4 responses to antigen in BALB/c mice. Taken together, these data implicate IL-4 generated during the period of lymphocyte priming with antigen in establishing the cascade of responses required to generate airway hyperractivity to inhaled antigen. No role for IL-5 or eosinophils could be demonstrated.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3