Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl.

Author:

Carlesso N1,Frank D A1,Griffin J D1

Affiliation:

1. Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.

Abstract

Bcr/Abl is a chimeric oncogene that can cause both acute and chronic human leukemias. Bcr/Abl-encoded proteins exhibit elevated kinase activity compared to c-Abl, but the mechanisms of transformation are largely unknown. Some of the biological effects of Bcr/Abl overlap with those of hematopoietic cytokines, particularly interleukin 3 (IL-3). Such effects include mitogenesis, enhanced survival, and enhanced basophilic differentiation. Therefore, it has been suggested that p210Bcr/Abl and the IL-3 receptor may activate some common signal transduction pathways. An important pathway for IL-3 signaling involves activation of the Janus family kinases (JAKs) and subsequent tyrosyl phosphorylation of STAT proteins (signal transducers and activators of transcription). This pathway directly links growth factor receptors to gene transcription. We analyzed JAK activation, STAT protein phosphorylation, and the formation of specific DNA-binding complexes containing STAT proteins, in a series of leukemia cell lines transformed by Bcr/Abl or other oncogenes. We also examined these events in cell lines transformed by a temperature sensitive (ts) mutant of Bcr/Abl, where the kinase activity of Abl could be regulated. STAT1 and STAT5 were found to be constitutively phosphorylated in 32D, Ba/F3, and TF-1 cells transformed by Bcr/Abl, but not in the untransformed parental cell lines in the absence of IL-3. Phosphorylation of STAT1 and STAT5 was also observed in the human leukemia cell lines K562 and BV173, which express the Bcr/Abl oncogene, but not in several Bcr/Abl-negative leukemia cell lines. Phosphorylation of STAT1 and STAT5 was directly due to the tyrosine kinase activity of Bcr/Abl since it could be activated or deactivated by temperature shifting of cells expressing the Bcr/Abl ts mutant. DNA-STAT complexes were detected in all Bcr/Abl-transformed cell lines and they were supershifted by antibodies against STAT1 and STAT5. DNA-STAT complexes in 32Dp210Bcr/Abl cells were similar, but not identical, to those formed after IL-3 stimulation. It is interesting to note that JAK kinases (JAK1, JAK2, JAK3, and Tyk2) were not consistently activated in Bcr/Abl-positive cells. These data suggest that STATs can be activated directly by Bcr/Abl, possibly bypassing JAK family kinase activation. Overall, our results suggest a novel mechanism that could contribute to some of the major biological effects of Bcr/Abl transformation.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3