Lymphokine-mediated regulation of the proliferative response of clones of T helper 1 and T helper 2 cells.

Author:

Fernandez-Botran R1,Sanders V M1,Mosmann T R1,Vitetta E S1

Affiliation:

1. Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235.

Abstract

Murine Th1 and Th2 subsets differ not only in the lymphokines they produce, but also functionally. It is not clear what factors influence the preferential activation of one subset versus the other and what regulatory interactions exist between them. The purpose of this study was to examine the effect of lymphokines produced by clones of Th1 cells (IL-2 and IFN-gamma), Th2 cells (IL-4), and APC (IL-1) on the proliferative response of Th1 and Th2 cells after antigenic stimulation. Activation of both types of clones in the presence of antigen and APC resulted in the acquisition of responsiveness to the proliferative effects of both IL-2 and IL-4, although Th2 cells were more responsive to IL-4 than Th1 cells. Responsiveness of Th1 and Th2 cells to both lymphokines decreased with time after initial antigenic activation; Th1 cells lost their responsiveness to IL-4 more rapidly and to IL-2 more slowly than Th2 cells. IFN-gamma partially inhibited the IL-2 and IL-4-mediated proliferation of Th2, but not Th1 cells. Although the presence of IL-1 was not required for the response of Th1 or Th2 cells to IL-4, its presence resulted in a synergistic effect with IL-2 or IL-4 in Th2 but not in Th1 cells. Both subsets responded to a mixture of IL-2 and IL-4 in synergistic fashion. Delayed addition and wash-out experiments indicated that both IL-2 and IL-4 had to be present simultaneously in order for synergy to occur. These results suggest that Th cell subsets might regulate each other via the lymphokines that they secrete and that the pathways of IL-2 and IL-4 mediated proliferation are interrelated.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3