Efferocytosis impairs pulmonary macrophage and lung antibacterial function via PGE2/EP2 signaling

Author:

Medeiros Alexandra I.1,Serezani Carlos H.1,Lee Sang Pyo12,Peters-Golden Marc1

Affiliation:

1. Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health Systems, Ann Arbor, MI 48109

2. Gachon University Gil Hospital, Incheon 405-760, South Korea

Abstract

The ingestion of apoptotic cells (ACs; termed “efferocytosis”) by phagocytes has been shown to trigger the release of molecules such as transforming growth factor β, interleukin-10 (IL-10), nitric oxide, and prostaglandin E2 (PGE2). Although the antiinflammatory actions of these mediators may contribute to the restoration of homeostasis after tissue injury, their potential impact on antibacterial defense is unknown. The lung is highly susceptible to diverse forms of injury, and secondary bacterial infections after injury are of enormous clinical importance. We show that ACs suppress in vitro phagocytosis and bacterial killing by alveolar macrophages and that this is mediated by a cyclooxygenase–PGE2–E prostanoid receptor 2 (EP2)–adenylyl cyclase–cyclic AMP pathway. Moreover, intrapulmonary administration of ACs demonstrated that PGE2 generated during efferocytosis and acting via EP2 accounts for subsequent impairment of lung recruitment of polymorphonuclear leukocytes and clearance of Streptococcus pneumoniae, as well as enhanced generation of IL-10 in vivo. These results suggest that in addition to their beneficial homeostatic influence, antiinflammatory programs activated by efferocytosis in the lung have the undesirable potential to dampen innate antimicrobial responses. They also identify an opportunity to reduce the incidence and severity of pneumonia in the setting of lung injury by pharmacologically targeting synthesis of PGE2 or ligation of EP2.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference36 articles.

1. Acute lung injury and the acute respiratory distress syndrome: a clinical review;Wheeler;Lancet.,2007

2. Science review: apoptosis in acute lung injury;Matute-Bello;Crit. Care.,2003

3. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF;Fadok;J. Clin. Invest.,1998

4. Immunosuppressive effects of apoptotic cells;Voll;Nature.,1997

5. Transcriptional and translational regulation of inflammatory mediator production by endogenous TGF-beta in macrophages that have ingested apoptotic cells;McDonald;J. Immunol.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3