EVIDENCE FOR A BLOOD-THYMUS BARRIER USING ELECTRON-OPAQUE TRACERS

Author:

Raviola Elio1,Karnovsky Morris J.1

Affiliation:

1. From the Department of Anatony and the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115

Abstract

In order to verify the existence of a blood-thymus barrier to circulating macromolecules, the permeability of the vessels of the thymus was analyzed in young adult mice using electron opaque tracers of different molecular dimensions (horseradish peroxidase, cytochrome c, catalase, ferritin, colloidal lanthanum). Results show that although blood-borne macromolecules do penetrate the thymus, their parenchyma] distribution is limited to the medulla of the lobe by several factors: (a) the differential permeability of the various segments of the vascular tree; (b) the spatial segregation of these segments within the lobe; (c) the strategic location of parenchymal macrophages along the vessels. The cortex is exclusively supplied by capillaries, which have impermeable endothelial junctions. Although a small amount of tracer is transported by plasmalemmal vesicles through the capillary endothelium, this tracer is promptly sequestrated by macrophages stretched out in a continuous row along the cortical capillaries and it does not reach the intercellular clefts between cortical lymphocytes and reticular cells. The medulla contains all the leaky vessels, namely postcapillary venules and arterioles. Across the walls of the venules, large quantities of all injected tracers escape through the clefts between migrating lymphocytes and endothelial cells; also the arterioles have a small number of endothelial junctions which are permeable to peroxidase, but do not allow passage of tracers of higher molecular weight. The tracers released by the leaky vessels penetrate the intercellular clefts of the medulla, but they never reach the cortical parenchyma, even at long time intervals after the injection. Therefore, a blood-thymus barrier to circulating macromolecules does exist, but is limited to the cortex. Medullary lymphocytes are freely exposed to blood-borne substances.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3