IMMUNOFLUORESCENT STUDIES OF THE POTENTIATION OF AN ADENOVIRUS-ASSOCIATED VIRUS BY ADENOVIRUS 7

Author:

Blacklow Neil R.1,Hoggan M. David1,Rowe Wallace P.1

Affiliation:

1. From the National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Infectious Diseases, Bethesda, Maryland

Abstract

A quantitative immunofluorescent procedure for detection of viral antigen was used to study the potentiation of AAV-1 by Ad.7. AAV viral antigen formed only when the cells were also infected with adenovirus, and only in cell culture systems in which the adenovirus infection proceeded to completion. Ad. 7 infection of AGMK. cell cultures did not potentiate AAV unless the Ad. 7 infection was itself potentiated by SV40. Dose-response studies indicated that a single AAV particle and a single infectious Ad. 7 particle sufficed to initiate AAV antigen synthesis. Sequential inoculation studies showed that AAV antigen formed simultaneously with Ad. 7 viral antigen when the AAV was inoculated any time between 15 hr before to 10 hr after the Ad. 7, both antigens appearing about 15 hr after inoculation of Ad. 7. The AAV-1 antigen formation had a minimum latent period of 5 hr, as seen with Ad. 7 preinfection of 10 hr or more. When UV-irradiated Ad. 7 was used as helper, the AAV antigen still appeared simultaneously with the Ad. 7 viral antigen, even though the latter was delayed by 23 hr compared to nonirradiated virus. When the early replicative events of both viruses were allowed to proceed in FUDR-inhibited cells, and then the FUDR inhibition was reversed, AAV antigen formed within 2 hr, which was 3 hr before the Ad. 7 viral antigen appeared. It was inferred that the event in the adenovirus cycle that renders a cell competent to synthesize AAV occurs after the 10th hr and may be temporally associated with replication of the adenovirus DNA.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3