Signal Transducer and Activator of Transcription Factor 6 (Stat6)-deficient Mice Are Protected from Antigen-induced Airway Hyperresponsiveness and Mucus Production

Author:

Kuperman Douglas1,Schofield Brian1,Wills-Karp Marsha1,Grusby Michael J.11

Affiliation:

1. From the Department of Environmental Health Sciences, Johns Hopkins School of Public Health, Baltimore, Maryland 21205; and the Department of Immunology and Infectious Diseases, Harvard School of Public Health, and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115

Abstract

The pleiotropic cytokine interleukin 4 (IL-4) has been shown to regulate many processes thought to be important in the allergic diathesis. To determine the mechanism(s) by which IL-4 mediates allergic airway responses to inhaled allergens, we compared the effects of antigen sensitization and challenge on the development of allergic airway responses in mice in which the gene for the signal transducer and activator of transcription factor 6 (Stat6) was disrupted to those of their wild-type littermates. Strikingly, Stat6-deficient mice failed to develop airway hyperresponsiveness (AHR), which was observed in their wild-type littermates after allergen provocation. Moreover, antigen-induced increases in mucus-containing cells were found to be completely Stat6 dependent. Consistent with the lack of Th2 cytokine responses in Stat6-deficient mice, no ovalbumin-specific immunoglobulin (Ig)E was detected in their serum. In contrast, Stat6 signaling only partially mediated antigen-induced eosinophilia with no role in vascular adhesion molecule 1 expression. These results indicate that Stat6 signal transduction is critical in the development of allergen-induced AHR and that agents that specifically inhibit this pathway may provide a novel strategy for the treatment of allergic disorders.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 403 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3