Interferon–inducible T Cell Alpha Chemoattractant (I-TAC): A Novel Non-ELR CXC Chemokine with Potent Activity on Activated T Cells through Selective High Affinity Binding to CXCR3

Author:

Cole Katherine E.1,Strick Christine A.1,Paradis Timothy J.1,Ogborne Kevin T.1,Loetscher Marcel1,Gladue Ronald P.1,Lin Wen1,Boyd James G.1,Moser Bernhard1,Wood Douglas E.1,Sahagan Barbara G.1,Neote Kuldeep1

Affiliation:

1. From the Department of Molecular Sciences and the Department of Immunology, Central Research Division, Pfizer Inc., Groton, Connecticut 06340; and the Theodor Kocher Institute, University of Bern, CH-300-ern-9, Switzerland

Abstract

Chemokines are essential mediators of normal leukocyte trafficking as well as of leukocyte recruitment during inflammation. We describe here a novel non-ELR CXC chemokine identified through sequence analysis of cDNAs derived from cytokine-activated primary human astrocytes. This novel chemokine, referred to as I-TAC (interferon-inducible T cell alpha chemoattractant), is regulated by interferon (IFN) and has potent chemoattractant activity for interleukin (IL)-2–activated T cells, but not for freshly isolated unstimulated T cells, neutrophils, or monocytes. I-TAC interacts selectively with CXCR3, which is the receptor for two other IFN-inducible chemokines, the IFN-γ–inducible 10-kD protein (IP-10) and IFN-γ– induced human monokine (HuMig), but with a significantly higher affinity. In addition, higher potency and efficacy of I-TAC over IP-10 and HuMig is demonstrated by transient mobilization of intracellular calcium as well as chemotactic migration in both activated T cells and transfected cell lines expressing CXCR3. Stimulation of astrocytes with IFN-γ and IL-1 together results in an ∼400,000-fold increase in I-TAC mRNA expression, whereas stimulating monocytes with either of the cytokines alone or in combination results in only a 100-fold increase in the level of I-TAC transcript. Moderate expression is also observed in pancreas, lung, thymus, and spleen. The high level of expression in IFN- and IL-1–stimulated astrocytes suggests that I-TAC could be a major chemoattractant for effector T cells involved in the pathophysiology of neuroinflammatory disorders, although I-TAC may also play a role in the migration of activated T cells during IFN-dominated immune responses.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference59 articles.

1. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines;Baggiolini;Adv Immunol,1994

2. Chemokines, leukocyte trafficking, and inflammation;Schall;Curr Opin Immunol,1994

3. Chemokines, inflammation and the immune system;Taub;Ther Immunol,1994

4. Human chemokines: an update;Baggiolini;Annu Rev Immunol,1997

5. A new class of membrane-bound chemokine with a CX3C motif;Bazan;Nature,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3