Fractalkine Preferentially Mediates Arrest and Migration of CD16+ Monocytes

Author:

Ancuta Petronela1,Rao Ravi2,Moses Ashlee3,Mehle Andrew1,Shaw Sunil K.2,Luscinskas F. William2,Gabuzda Dana1

Affiliation:

1. Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute

2. Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115

3. Vaccine and Gene Therapy Institute, Oregon Health & Sciences University, Beaverton, OR 97006

Abstract

CD16+ monocytes represent 5–10% of peripheral blood monocytes in normal individuals and are dramatically expanded in several pathological conditions including sepsis, human immunodeficiency virus 1 infection, and cancer. CD16+ monocytes produce high levels of proinflammatory cytokines and may represent dendritic cell precursors in vivo. The mechanisms that mediate the recruitment of CD16+ monocytes into tissues remain unknown. Here we investigate molecular mechanisms of CD16+ monocyte trafficking and show that migration of CD16+ and CD16− monocytes is mediated by distinct combinations of adhesion molecules and chemokine receptors. In contrast to CD16− monocytes, CD16+ monocytes expressed high CX3CR1 and CXCR4 but low CCR2 and CD62L levels and underwent efficient transendo-thelial migration in response to fractalkine (FKN; FKN/CX3CL1) and stromal-derived factor 1α (CXCL12) but not monocyte chemoattractant protein 1 (CCL2). CD16+ monocytes arrested on cell surface–expressed FKN under flow with higher frequency compared with CD16− monocytes. These results demonstrate that FKN preferentially mediates arrest and migration of CD16+ monocytes and suggest that recruitment of this proinflammatory monocyte subset to vessel walls via the CX3CR1-FKN pathway may contribute to vascular and tissue injury during pathological conditions.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3