CD103 Expression Is Required for Destruction of Pancreatic Islet Allografts by CD8+ T Cells

Author:

Feng Ye1,Wang Donghua1,Yuan Rongwen1,Parker Christina M.2,Farber Donna L.13,Hadley Gregg A.13

Affiliation:

1. Division of Transplantation, Department of Surgery, The University of Maryland Medical Center

2. Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115

3. Department of Microbiology & Immunology, The University of Maryland at Baltimore, Baltimore, MD 21201

Abstract

The mechanisms by which CD8 effector populations interact with epithelial layers is a poorly defined aspect of adaptive immunity. Recognition that CD8 effectors have the capacity to express CD103, an integrin directed to the epithelial cell-specific ligand E-cadherin, potentially provides insight into such interactions. To assess the role of CD103 in promoting CD8-mediated destruction of epithelial layers, we herein examined the capacity of mice with targeted disruption of CD103 to reject pancreatic islet allografts. Wild-type hosts uniformly rejected islet allografts, concomitant with the appearance of CD8+CD103+ effectors at the graft site. In contrast, the majority of islet allografts transplanted into CD103−/− hosts survived indefinitely. Transfer of wild-type CD8 cells into CD103−/− hosts elicited prompt rejection of long-surviving islet allografts, whereas CD103−/− CD8 cells were completely ineffectual, demonstrating that the defect resides at the level of the CD8 cell. CD8 cells in CD103−/− hosts exhibited normal effector responses to donor alloantigens in vitro and trafficked normally to the graft site, but strikingly failed to infiltrate the islet allograft itself. These data establish a causal relationship between CD8+CD103+ effectors and destruction of graft epithelial elements and suggest that CD103 critically functions to promote intragraft migration of CD8 effectors into epithelial compartments.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3