Formation of the initial C3 convertase of the alternative complement pathway. Acquisition of C3b-like activities by spontaneous hydrolysis of the putative thioester in native C3.

Author:

Pangburn M K,Schreiber R D,Müller-Eberhard H J

Abstract

Activation of the alternative pathway of complement commences with the formation of an initial fluid-phase C3 convertase. Treatment of C3 with the nucleophilic reagent methylamine has previously been shown to result in the cleavage of an intramolecular thioester bond and to induce C3b-like properties, including the ability to form a fluid-phase C3 convertase. This report examines the hypothesis that spontaneous hydrolysis of the thioester generates a derivative of C3 that is responsible for the formation of the initial C3 convertase of the alternative pathway. The rate of spontaneous decay of C3 hemolytic activity in buffer was found to be between 0.2 and 0.4%/h. In the presence of other alternative pathway proteins, the rate of inactivation was 1%/h. The rate of spontaneous inactivation was greatly accelerated by low concentrations of chaotrophic agents such as KSCN or guanidine. Liberation of a sulfhydryl group, not present in native C3, correlated with loss of hemolytic activity, indicating that exposure to chaotropic agents resulted in thioester hydrolysis. Unlike native C3, C3 bearing a single reactive sulfhydryl group was capable of generating fluid-phase C3 convertase with Factors B, D, and P and was cleaved by Factor I (C3b inactivator) in the presence of Factor H (beta 1H). The fragmentation patterns indicated that the C3a domain was covalently associated with the functionally C3b-like C3. Organomercurial agarose was employed for the rapid removal of sulfhydryl-bearing, hemolytically inactive forms of C3 and C3b from native hemolytically active C3.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 382 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3