On Asymptotic Regge Trajectories of Heavy Meson Resonances

Author:

Bugaev K.A.,Nikonov E.G.,Sorin A.S.,Zinovjev G.M.

Abstract

We performed the analysis of the asymptotic behavior of Regge trajectories of nonstrange and strange mesons and found that thewidth of heavy hadrons for these trajectories cannot linearly depend on their mass. Such a finding clearly demonstrates that a widely spread belief on the linear mass dependence of the resonance width contradicts the linearity of Regge trajectories on theMandelstam variable s. Using the data on masses and widths for ρJ––, ωJ––, aJ++,, and fJ++ mesons with the spin values J ≤ 6 and for K*J mesons with J ≤ 5, we extracted the parameters of the asymptotically linear Regge trajectories predicted by the finite-width model of quark gluon bags. It is shown that the parameters obtained for the data sets B and D are consistent with the cross-over temperaturedetermined by the lattice QCD simulations at the vanishing baryonic density and with the kinetic freeze-out temperature of early hadronizing particles found in relativistic heavy ion collisions at and above the highest SPS energy. Comparing the resonance width of sets B and D evaluated at the masses of Z and W bosons, respectively, we discovered that the calculated width values match that of the gauge bosons. We argue that such matches provide us with indirect, but the first experimental evidence for the compositeness of Z and W bosons. Based on these findings, we assume that Z,  W, and Higgs bosons have the Regge trajectories which are similar to the asymptotic trajectories of the studied mesons. The predictions for the masses and widths of the Regge partners of Z and W bosons and for the mass dependence of the widths of Higgs boson Regge partners along with the values for the mass and width of the scalar Higgs mesons are made as well.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3