Application of digital image analysis as a method of assessing the of carbonation process of cement binders – impact of distortion on the results of real and model samples

Author:

Szydłowski Jakub1ORCID

Affiliation:

1. AGH University of Science and Technology, Kraków, Poland

Abstract

Nowadays, because of the use of active additives in cement, studies on carbonation progress are crucial to ensure the safety of structures. Carbonation depth measurement involves the use of a calliper to determine the front of the carbonation. The values determined in this way are averaged, and the corrosion progress is estimated based on these values. Due to the fact that the standard approach assumes the use of a discrete method for determining the carbonation depth, the measurement may be subject to error, and its execution, especially for many samples, is time-consuming. An alternative method for determining the depth of carbonation may be continuous measurement, which determines the actual depth of carbonation since the entire sample area is analysed. Therefore, digital image analysis is the more precise and convenient approach. Unfortunately, it is not an approach, covered by the standards, but may help to assess the correctness of the determination, the carbonation depth. The problem with the use of digital analysis in proposed method may be the quality of the image obtained. The main problem may be the sphericity of the image, related to the nature of the camera, but also the lack of perpendicularity of the optical system of the camera to the sample when fixing its image, related to incorrect positioning by the camera operator. The results show that the digital image analysis is more accurate than the traditional approach, and that the distortion caused by the tilt of the image does not affect the obtained values to a greater degree than the measurement accuracy of the traditional approach.

Publisher

Fundacja Cement Wapno Beton

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3