Physical and mechanical properties of meta-halloysite-based geopolymer mortars

Author:

Owsiak Zdzisława1ORCID,Szczykutowicz Katarzyna1

Affiliation:

1. Kielce University of Technology, Aleja Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

Abstract

Geopolymers are amorphous materials produced by the polymerisation reaction between an aluminosilicate precursor and an alkaline reagent or by activation with phosphoric acid. The aluminosilicate raw material used in the manufacture of geopolymers an be industrial waste, such as fly ash or volcanic ash, blastfurnace slag, or it can be obtained from natural raw materials, such as metakaolin and meta-halloysite. The work aimed to select the composition of an activator for the production of meta-halloysite geopolymers with optimum physico-mechanical properties such as specific and bulk density, porosity, weight, and bulk absorption, as well as flexural and compressive strength. A two-factor experimental design was employed to determine the composition of the alkaline activator for geopolymer mortars, with sodium hydroxide solution molar concentration and sodium silicate to NaOH ratio as variables. Research has shown that increasing the amount of sodium silicate relative to the mass of a 12M NaOH solution in the activator solution improves the compressive strength of geopolymers by 36.8%, while an increase in flexural strength of 14.2% was achieved. As the molar concentration of caustic soda in the activator solution increases from 19.0 to 24.5%, the porosity of geopolymer mortars decreases. The reduction in the ratio of water glass to sodium hydroxide and the reduction in the molar concentration of NaOH increases the mass and volume water absorption of the mortar. Further studies is necessary to determine the optimal mixture of metahalloysite geopolymer, taking into account its functional properties and durability.

Publisher

Fundacja Cement Wapno Beton

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3