Abstract
Abstract
Gallium nitride (GaN) devices inherently offer many advantages over silicon power devices, including a higher operating frequency, lower on-state resistance and higher operating temperature capabilities, which can enable higher power density and more efficient power electronics. Turn-off dV/dt controllability plays a key role in determining common-mode voltage in electrical drives and traction inverter applications. The fast-switching edges of GaN can introduce challenges such as electromagnetic interference, premature insulation failure and high overshoot voltages. In this paper, the device working principle, characteristics and dV/dt controllability of 1.2 kV GaN polarisation superjunction (PSJ) heterostructure FETs (HFETs) are presented. The effect of gate driving parameters and load conditions on turn-off dV/dt are investigated. It is shown that in PSJ HFETs the dV/dt can be effectively controlled to as low as 1 kV μs−1 by controlling the gate, with a minimum increase in switching losses. These results are highly encouraging for the application of the devices in motor drives.
Subject
General Physics and Astronomy,General Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献