Scintillation properties of Er3+-activated BaO–Nb2O5–TeO2 glasses

Author:

Kawano NaokiORCID,Okazaki KaiORCID,Takebuchi YumaORCID,Fukushima Hiroyuki,Kato TakumiORCID,Nakauchi DaisukeORCID,Kagaya Fumito,Shinozaki KenjiORCID,Yanagida TakayukiORCID

Abstract

Abstract Recently, glasses have gained great interest for use as scintillators owing to lots of industrial benefits such as ease of producing customizable shapes and low production cost. Herein, the Er3+-activated BaO–Nb2O5–TeO2 glasses were fabricated for the development of NIR glass scintillators. The Er3+-activated BaO–Nb2O5–TeO2 glasses exhibited efficient photoluminescence and scintillation that originated from the 4f→4f transition of Er3+. Their quantum yields in photoluminescence were 80% (0.1%Er2O3), 81% (0.5%Er2O3), and 61% (1.0%Er2O3). Further, an almost linear correlation between an X-ray dose rate and NIR scintillation intensity was observed in the 0.5–5000 mGy h−1 dose rate range. Interestingly, the lowest detectable dose rate limit (0.5 mGy h−1) was lower than that of Er-doped Bi4Ge3O12 and Nd-doped GdVO4 single crystals. Further, afterglow levels of the non-doped and Er3+-activated BaO–Nb2O5–TeO2 glasses were about 600 ppm. The observed NIR scintillation properties indicated that the Er3+-activated tellurite glasses should be promising compounds for NIR-emitting scintillators.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical and radiation response properties of Nd-doped BaTi4O9 crystals emitting near-infrared photons;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3