Low thermal crosstalk silicon MZI optical switch with high speed and low power consumption

Author:

Iino Kohei,Kita Tomohiro

Abstract

Abstract We developed a compact thermo-optic Mach–Zehnder interferometer switch with a direct heating heater using multimode interference and achieved a sufficiently low thermal crosstalk performance. Large-scale switch systems, such as optical neural networks, require thermo-optical switches with low power consumption, fast switching speed, compact size, and low thermal crosstalk. This switch is equipped with a heater that directly heats the Si core waveguide, which is a structure that connects non-doped Si wires between phase shifters and a heatsink. As a result, a significant miniaturization with a phase shifter length of approximately 7 μm, low π-phase shift power consumption of less than 20 mW, and fast switching in sub-microseconds were achieved. The improved phase shifter showed a very small figure of merit of 8.89 mW∙μs. Simultaneously, transmission spectrum measurements of nearby ring resonators show that the thermal crosstalk is significantly reduced even at a distance of only 30 μm. This device can contribute to the overall circuit performance and footprint reduction in large-scale optical integrated circuits and optical neural network configurations.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3