Effect of Tri-Metallic Microgalvanic Corrosion on Localized Corrosion Based on Numerical Simulation: Geometric Effect of Intermetallic Compounds

Author:

Lee Woo-Hyuk1ORCID,Kim Geon-Il1ORCID,Kim Myeong-Cheol1ORCID,Ko Sang-Jin1,Lee Yoon-Ho1ORCID,Song Ju-Seung2ORCID,Kim Jung-Gu1ORCID

Affiliation:

1. *School of Advanced Materials Science and Engineering, Sungkyunkwan University College of Engineering, Suwon-si, Republic of Korea, 16419.

2. **Surface treatment materials development team, Hyundai Motor Group, Hwaseong-si, Republic of Korea, 18280.

Abstract

This study investigated the corrosion behavior of ADC12 and A365 aluminum alloys for automotive parts in the context of the growing use of aluminum parts in electric vehicles. Only ADC12 exhibited the formation of Al(OH)3 particle layer after corrosion, which was attributed to the microgalvanic effect influenced by the geometry characteristics of its microstructure. Results revealed that ADC12 was prone to forming Al(OH)3 particle layers due to the geometric effects of Si and θ-Al2Cu, which facilitates the isolation of α-Al. The distribution of band-shaped galvanic currents, concentrated in a small α-Al matrix region, was primarily governed by the geometry of Si, creating a preferred structure for α-Al isolation. Additionally, the geometry of θ-Al2Cu contributed to a significant increase in electrochemical kinetics, particularly at the tri-metallic coupled region, further enhancing the susceptibility of the isolation. As a result, the formation of the Al(OH)3 particle layer was attributed to the corrosion of isolated α-Al particles, generated through the synergistic effect of microgalvanic corrosion. Moreover, the corrosion attack progressed along the eutectic Si network, accompanied by θ-Al2Cu. Overall, the corrosion mechanism of ADC12 and A365 alloy was proposed.

Publisher

Association for Materials Protection and Performance (AMPP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3