Influence of Low Concentrations of Carbon Monoxide on Metabolism of Isolated Heart under Conditions of Ischemia-Reperfusion

Author:

Beschasnyi S. P.ORCID, ,Lysenko Ye. M.ORCID

Abstract

The purpose of the study was to determine the effect of different concentrations of carbon monoxide on the metabolism of isolated mice hearts. Materials and methods. To elucidate the effect of low concentrations of carbon monoxide on the myocardium, we performed retrograde perfusion of isolated hearts of laboratory mice with Krebs-Henseleit solution, which was saturated with carbon monoxide for 5, 10, and 30 minutes. We then determined how different concentrations of carbon monoxide affected coronary volumetric flow rate, myocardial glucose and calcium uptake, creatinine release, and aspartate aminotransferase release. During perfusion, R-wave amplitude and R-R interval were measured using an electrocardiograph. To determine the effect of ischemia on the heart muscle during perfusion with solutions of different concentrations, we measured the area of the affected myocardium after staining with 2,3,5-triphenyltetrazolium chloride. Results and discussion. After these studies, it was found that different concentrations of carbon monoxide had a dose-dependent effect on the isolated mouse heart. However, the dependence of the effects does not follow the pattern «lowest concentration – lowest effect». At the same time, an increase in concentration did not mean an increase in adverse effects on the myocardium. Even on the contrary, the smallest concentration led to increased signs of ischemic myocardial damage. In particular, the use of the solution, through which carbon monoxide was passed for 5 minutes, caused vasoconstrictor effect during perfusion. At the end of reperfusion, vasoconstrictor effect was observed after using a solution through which carbon monoxide was passed for 10 minutes. Increased glucose uptake was observed in the group with 30-minute carbon monoxide permeation against the background of the minimal myocardial creatinine release. In this group there was also a decrease in Ca2+ loss at the beginning of reperfusion (immediately after ischemia). The above phenomenon explains the least degree of ischemic myocardial damage in the isolated mouse heart. The obtained data should be expanded. Since it is difficult to accurately determine the dose of carbon monoxide, then the use of donor compounds is promising. Such compounds include CORM-2 and CORM-3. Under physiological conditions, they decompose in a controlled manner, releasing a specific amount of carbon monoxide. Conclusion. The obtained results indicate that at different concentrations of carbon monoxide can differently influence different structures of cardiomyocyte: at one concentration it binds to calcium channels, other concentrations influence ion channels of plasma membrane, which can explain all these dependencies

Publisher

Petro Mohyla Black Sea National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3