Synthesis and Biological Evaluation of 3,4-Dihydro-2H-benzo[b][1,4]-oxazine-2-carboxylic Acid Derivatives as Antitubercular Agents

Author:

Tambe Macchindra S.1,Gadhe Sonali1,Choudhari Amit2,Sarkar Dhiman2,Sangshetti Jaiprakash N.3,Patil Rajesh B.4

Affiliation:

1. P.G. Department of Chemistry and Research Centre, Padmashri Vikhe Patil College, Pravaranagar- 413713, India

2. Organic Chemistry Division Combichem-Bioresource Centre, National Chemical Laboratory, Pune-7, India

3. Y.B.Chavan College of Pharmacy, Aurangabad-431001, India

4. Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Pune-Saswad Road, Kondhwa (Bk), Pune-411048, India

Abstract

A series of side chain modified structurally diverse 3,4-dihydro-2H-benzo[b][1,4]-oxazine-2-carboxylic acid derivatives were synthesized and characterized by IR, 1H NMR, 13C NMR and mass spectral study. All the newly synthesized compounds were examined for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra. The synthesized compounds exhibited minimum inhibitory concentration (IC50) ranging from 5.98 to >30 (μg/mL) against MtbH37Ra. Among the screened compounds, compounds 5a, 5c, 5d, 5f, 5g, 5h, 5I, 5j exhibited IC50 as 10.42, 11.81, 18.79, 5.98, 19.21, 24.81 and 14.81 μg/mL, respectively. The antibacterial screening study of these compounds was conducted against four different bacteria to asses there selectivity towards MTB. The antibacterial screening of all the synthesized compounds was conducted against four bacterial strains (Gram-negative strains: E.coli and S.aureus; Gram-positive strains: P. aeruginosa and B.subtilis. The compounds 5a, 5b, 5c, 5e and 5j showed higher antibacterial activity up to 7-25 μg/mL. Furthermore, molecular docking studies revealed the binding modes of the compounds in the binding site of the good agreement with the in vitro antitubercular screening. The compounds 5a, 5c and 5f with free energy of binding lower than -9.0 Kcal/mol binds more favourably at the binding site of panC as compared to other compounds. Specifically, the compound 5f with free energy of binding -9.6 Kcal/mol is indeed found more active in docking study as well as in the in vitro antitubercular screening. These findings open the possibility for potential lead for antituberculosis chemotherapy.

Publisher

Asian Journal of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3