GOLPH3 modulates expression and alternative splicing of transcription factors associated with endometrial decidualization in human endometrial stromal cells

Author:

Zhu Suqin1,Lin Dianliang1,Ye Zhoujie2,Chen Xiaojing1,Jiang Wenwen1,Xu Huiling1,Quan Song3,Zheng Beihong1

Affiliation:

1. Reproductive Medicine Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China

2. Medical Research Center, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China

3. Department of Obstetrics and Gynecology, Southern Medical University, Guangzhou, Guangdong, China

Abstract

Endometrial decidualization is a decidual tissue formed by the proliferation and re-differentiation of endometrial stroma stimulated by decidualization inducing factors. It is very important for the proper maintenance of pregnancy. Previous studies speculated that Golgi phosphoprotein 3 (GOLPH3) may have a regulatory role in the process of endometrial decidualization, while the specific molecular mechanisms of GOLPH3 is unclear. In this part, GOLPH3 was silenced in human endometrial stromal cells (hESCs), and the transcriptome data (RNA-seq) by GOLPH3 knockdown (siGOLPH3) was obtained by high-throughput sequencing technology so as to analyze the potential targets of GOLPH3 at expression and alternative splicing levels in hESCs. Through bioinformatics analysis, we found that siGOLPH3 can significantly affect the overall transcriptional level of hESCs. A total of 6,025 differentially expressed genes (DEGs) and 4,131 differentially alternative splicing events (DASEs) were identified. Through functional cluster analysis of these DEGs and genes where differential alternative splicing events are located, it is found that they are enriched in the PI3K/Akt signaling pathway, RNA splicing and processing, transcription factors and other pathways related to endometrial decidualization and important biological processes, indicating the important biological function of GOLPH3. At the same time, we focused on the analysis of the transcription factors regulated by GOLPH3, including gene expression regulation and the regulation of variable splicing. We found that GOLPH3can regulate the expression of transcription factors such as LD1, FOSL2, GATA2, CSDC2 and CREB3L1. At the same time, it affects the variable splicing mode of FOXM1 and TCF3. The function of these transcription factors is directly related to decidualization of endometrium. Therefore, we infer that GOLPH3 may participate in endometrial de membrane by regulating expression and alternative splicing levels of transcription factors. We further identified the role of GOLPH3 in the transcriptional mechanism. At the same time, it also expands the function mode of GOLPH3 protein molecule, and provides a theoretical basis for downstream targeted drug research and development and clinical application.

Funder

Fujian Provincial Maternity and Children Hospital

Fujian Natural Science Foundation

Health Research Project of the Department of Finance

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3