The quality of the fossil record across higher taxa: compositional fidelity of phyla and classes in benthic marine associations

Author:

Tyler Carrie1,Kowalewski Michał2

Affiliation:

1. Department of Geoscience, University of Nevada, Las Vegas, Nevada, United States of America

2. Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America

Abstract

Although the fossil record preserves a wealth of historical data about past ecosystems, the current paradigm, which postulates that fossils provide faithful archives of ecological information, stems from research primarily focused on a single group of organisms known for their high fossilization potential: molluscs. Here, we quantify the fidelity of higher taxa (six phyla and 11 classes) by comparing live communities and sympatric dead remains (death assemblages) using comprehensive surveys of benthic marine invertebrates from coastal habitats in North Carolina (U.S.A). We found that although community composition differed between the two assemblages across phyla and classes, these differences were predictable with an overabundance of robust and more preservable groups. In addition, dead molluscs appear to be an excellent proxy for all taxa when tracking spatio-temporal patterns and shifts in community structure using a variety of ecological metrics, including measures of α, γ, and β diversity/evenness. This suggests that despite filters imposed by differential preservation of taxa and time-averaging, the fossil record is likely to be reliable with respect to relative comparisons of composition and diversity in shallow benthic marine paleocommunities. This is consistent with previous work indicating that shallow marine death assemblages can yield robust ecological estimates adequate for assessing the variability of ecosystems that existed under natural, pre-anthropogenic conditions.

Funder

The National Science Foundation

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3