Lp-PLA2 silencing ameliorates inflammation and autophagy in nonalcoholic steatohepatitis through inhibiting the JAK2/STAT3 pathway

Author:

Yao Jinmei,Zhao Ying

Abstract

Background Nonalcoholic steatohepatitis (NASH), a common cause of liver-related morbidity and mortality worldwide, is characterized by inflammation and hepatocellular injury. Our research focuses on lipoprotein-associated phospholipase A2 (Lp-PLA2), an inflammation-related biomarker that has recently garnered interest in the context of NASH due to its potential roles in disease pathogenesis and progression. Methods We established a NASH mouse model using a high-fat diet (HFD) and treated it with sh-Lp-PLA2 and/or rapamycin (an mTOR inhibitor). Lp-PLA2 expression in NASH mice was detected by qRT-PCR. Serum levels of liver function parameters and inflammatory cytokines were detected using corresponding assay kits. We examined pathological changes in liver using hematoxylin-eosin, oil red O, and Masson staining, and observed autophagy through transmission electron microscopy. The protein levels of Lp-PLA2, mTOR, light chain 3 (LC3) II/I, phosphorylated Janus kinase 2 (p-JAK2)/JAK2, and phosphorylated signal transducer and activator of transcription 3 (p-STAT3)/STAT3 were determined by western blotting. Kupffer cells extracted from C57BL/6J mice were treated to replicate NASH conditions and treated with sh-Lp-PLA2, rapamycin, and/or a JAK2-inhibitor to further verify the roles and mechanisms of Lp-PLA2 in NASH. Results Our data indicate an upregulation of Lp-PLA2 expression in HFD-induced NASH mice. Silencing Lp-PLA2 in NASH mice reduced liver damage and inflammation markers (aspartate aminotransferase (AST), alanine aminotransferase (ALT), total cholesterol (TC), triglycerides (TG), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6)), while increasing IL-10 levels, an anti-inflammatory cytokine. Additionally, Lp-PLA2 silencing decreased lipid and collagen accumulation and promoted autophagy. The beneficial effects of sh-Lp-PLA2 on NASH were enhanced by rapamycin. Furthermore, Lp-PLA2 silencing resulted in the downregulation of the expression of p-JAK2/JAK2 and p-STAT3/STAT3 in NASH mice. Similar results were observed in Kupffer cells treated under NASH conditions; Lp-PLA2 silencing promoted autophagy and repressed inflammation, effects which were potentiated by the addition of rapamycin or a JAK2-inhibitor. Conclusion Our findings suggest that silencing Lp-PLA2 promotes autophagy via deactivating the JAK2/STAT3 signaling pathway, thereby restraining NASH progression. This highlights the potential therapeutic value of targeting Lp-PLA2, adding a new dimension to our understanding of NASH pathogenesis and treatment strategies.

Funder

National Natural Science Foundation of Zhejiang Province

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3