Intra- and inter-session reliability and repeatability of an infrared thermography device designed for materials to measure skin temperature of the triceps surae muscle tissue of athletes

Author:

Calvo-Lobo Cesar1,San-Antolín Marta2,García-García Daniel13,Becerro-de-Bengoa-Vallejo Ricardo1ORCID,Losa-Iglesias Marta Elena4ORCID,Cosín-Matamoros Julia1,Casado-Hernández Israel1,Martínez-Jiménez Eva María1ORCID,Mazoteras-Pardo Victoria5,Rodríguez-Sanz David1

Affiliation:

1. Facultad de Enfermería, Fisioterapia y Podología, Universidad Complutense de Madrid, Madrid, Spain

2. Departamento de Psicología, Universidad de Valladolid, Valladolid, Valladolid, Spain

3. Escuela de Doctorado, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain

4. Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain

5. Department of Nursing, Physiotherapy and Occupational Therapy, School of Physiotherapy and Nursing, Universidad de Castilla La Mancha, Toledo, Spain, Spain

Abstract

Background Infrared thermography devices have been commonly applied to measure superficial temperature in structural composites and walls. These tools were cheaper than other thermographic devices used to measure superficial human muscle tissue temperature. In addition, infrared thermography has been previously used to assess skin temperature related to muscle tissue conditions in the triceps surae of athletes. Nevertheless, the reliability and repeatability of an infrared thermography device designed for materials, such as the Manual Infrared Camera PCE-TC 30, have yet to be determined to measure skin temperature of the triceps surae muscle tissue of athletes. Objective The purpose was to determine the procedure’s intra- and inter-session reliability and repeatability to determine skin temperature within the Manual Infrared Camera PCE-TC 30 thermography device in the triceps surae muscle tissue of athletes, which was initially designed to measure the superficial temperature of materials. Methods A total of 34 triceps surae muscles were bilaterally assessed from 17 healthy athletes using the Manual Infrared Camera PCE-TC 30 thermography device to determine intra- (at the same day separated by 1 h) and inter-session (at alternate days separated by 48 h) reliability and repeatability of the skin temperature of the soleus, medial and lateral gastrocnemius muscles. The triceps surae complex weas measured by a region of interest of 1 cm2 through five infrared thermography images for each muscle. Statistical analyses comprised intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimum detectable change (MCD), systematic error of measurement, correlation (r), and Bland-Altman plots completed with linear regression models (R2). Results Intra- and inter-session measurements of the proposed infrared thermography procedure showed excellent reliability (ICC(1,2) = 0.968–0.977), measurement errors (SEM = 0.186–0.232 °C; MDC = 0.515–0.643 °C), correlations (r = 0.885–0.953), and did not present significant systematic error of measurements (P > 0.05). Adequate agreement between each pair of measurement moments was presented by the Bland-Altman plots according to the limits of agreement and non-significant linear regression models (R2 = 0.000–0.019; P > 0.05). Conclusions The proposed procedure to determine skin temperature within the Manual Infrared Camera PCE-TC 30 thermography device presented excellent intra- and inter-session reliability and repeatability in athletes’ triceps surae muscle tissue. Future studies should consider the SEM and MDC of this procedure to measure the skin temperature of soleus, medial, and lateral gastrocnemius muscles to promote triceps surae muscle prevention and recovery in athletes.

Funder

Complutense University and PCE Ibérica S.L

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3