Ethanolamine-phosphate phospho-lyase (ETNPPL) contributes to the diagnosis, prognosis, and therapy of hepatocellular carcinoma

Author:

Zhang Yun1,Shen Li2,Wang Bojun3,Wu Xiaohong1

Affiliation:

1. Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China

2. Disinfection Supply Center, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China

3. Department of General Surgery, Yixing Fourth People’s Hospital, Yixing, Jiangsu, China

Abstract

Background Hepatocellular carcinoma (HCC) is characterized by high mortality, difficulty in early screening, relapse, and poor prognosis. This study aimed to explore the expression of ethanolamine-phosphate phospho-lyase (ETNPPL) and its clinical significance in HCC. Methods Differentially expressed mRNAs were screened using microarray analysis. Functional enrichment was performed using GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. We used qRT-PCR to measure the expression of ETNPPL in HCC tissues and paired paracarcinoma tissues. A receiver operating characteristic (ROC) curve and Kaplan-Meier curve were conducted to assess the diagnostic and prognostic values. Cell behaviors were evaluated using a scratch test and transwell assay. Results The results showed that numerous mRNAs are abnormally expressed in HCC. ETNPPL was decreased in HCC tissues and cells. The area under curve (AUC) of ETNPPL was 0.9089, demonstrating that ETNPPL had diagnostic value. Low expression of ETNPPL was related to poor prognosis for patients with HCC. Moreover, the over-expression of ETNPPL inhibited HCC cell migration and invasion. Conclusions In conclusion, downregulated ETNPPL was found in HCC and is related to poor patient prognosis and the promotion of cell metastasis. This suggests that ETNPPL serves both as a promising diagnosis and prognosis biomarker, and a therapy target of HCC.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3