Accumulation and transfer of polystyrene microplastics in Solanum nigrum seedlings

Author:

Zhang JuKui1,Cao Lian1,Zhu Xiaoyan1,Li Hanbo1,Duan Gang1,Wang Ying1

Affiliation:

1. Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, China

Abstract

Microplastic (MP) pollution is lately receiving increasing attention owing to its harmful impact on terrestrial ecosystems. In this microcosm study, we assessed the uptake and transfer of MPs in Solanum nigrum seedlings exposed to 50 mg L–1 of 0.2-µm polystyrene (PS) beads for 30 d. Confocal laser scanning micrographs helped detect highly intense red fluorescence signals from PS-MP beads in S. nigrum root compared with the controls. Confocal images revealed that the PS beads were primarily distributed in the epidermis and xylem of roots and vascular systems of stems and leaves. Scanning electron microscopy showed that PS beads were scattered on the cell walls of the root xylem and leaf vascular system. Few PS beads were transferred from roots to stems and leaves via the vascular system following the transpiration stream. In conclusion, our findings showed that PS beads accumulated in S. nigrum roots and were transferred from the roots to the aerial parts.

Funder

Natural Science Foundation of Jilin Province

National Water Pollution Control and Management Technology Major Project of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3