The predatory bug Orius strigicollis shows a preference for egg-laying sites based on plant topography

Author:

Yu Chendi1,Huang Jun1,Ren Xiaoyun1,Fernández-Grandon G Mandela2,Li Xiaowei1,Hafeez Muhammad1,Lu Yaobin1

Affiliation:

1. State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China

2. University of Greenwich, Natural Resources Institute, Chatham Maritime, Kent, UK

Abstract

Background Oviposition site selection is an important factor in determining the success of insect populations. Orius spp. are widely used in the biological control of a wide range of soft-bodied insect pests such as thrips, aphids, and mites. Orius strigicollis (Heteroptera: Anthocoridae) is the dominant Orius species in southern China; however, what factor drives its selection of an oviposition site after mating currently remains unknown. Methods Here, kidney bean pods (KBPs) were chosen as the oviposition substrate, and choice and nonchoice experiments were conducted to determine the preferences concerning oviposition sites on the KBPs of O. strigicollis. The mechanism of oviposition behavior was revealed through observation and measurement of oviposition action, the egg hatching rate, and the oviposition time. Results We found that O. strigicollis preferred the seams of the pods for oviposition, especially the seams at the tips of the KBPs. Choice and nonchoice experiments showed that females did not lay eggs when the KBP tail parts were unavailable. The rates of egg hatching on different KBP parts were not significantly different, but the time required for females to lay eggs on the tip seam was significantly lower. Decreased oviposition time is achieved on the tip seam because the insect can exploit support points found there and gain leverage for insertion of the ovipositor. Discussion The preferences for oviposition sites of O. strigicollis are significantly influenced by the topography of the KBP surface. Revealing such behavior and mechanisms will provide an important scientific basis for the mass rearing of predatory bugs.

Funder

Project National Key Research and Development

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Egg Biology of Insect Predators;Worldwide Predatory Insects in Agroecosystems;2023

2. Preferencia de oviposición de Orius insidiosus (Hemiptera: Anthocoridae) en plantas herbáceas;Agronomía Mesoamericana;2022-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3