Transcriptome analysis identifies candidate genes in the biosynthetic pathway of sex pheromones from a zygaenid moth, Achelura yunnanensis (Lepidoptera: Zygaenidae)

Author:

Nuo Shu-Mei1,Yang An-Jin1,Li Gen-Ceng1,Xiao Hai-Yan1,Liu Nai-Yong1

Affiliation:

1. Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China

Abstract

In most moth species, sex pheromones responsible for mating and communication of both sexes are primarily produced by the pheromone glands (PGs) of female moths. Although the PG transcriptomes and pheromone production related genes from 24 moth species have been characterized, studies on the related information remain unknown in the Zygaenidae family. Here, we sequenced the PG transcriptome of a zygaenid moth, Achelura yunnanensis. Such the sequencing resulted in the yields of 47,632,610 clean reads that were assembled into 54,297 unigenes, coupled with RNA sequencing data from 12 other tissues. Based on the transcriptome, a total of 191 genes encoding pheromone biosynthesis and degradation enzymes were identified, 161 of which were predicted to have full-length sequences. A comparative analysis among 24 moth species of nine families indicated that the numbers of the genes were variable, ranging from 14 in two Grapholita species to 191 in A. yunnanensis. Phylogenetic analysis in parallel with the expression data highlighted some key genes, including three △9 and four △11 desaturases, four fatty acyl-CoA reductases (FARs) clustering in the pgFAR clade, and three significantly antennae-enriched aldehyde oxidases. An extensive tissue- and sex- expression profile revealed a broad distribution of the genes, in which 128 relatives were detected in the PGs and 127 in the antennae. This study reports, for the first time, the gene repertoires associated with the pheromone production in Zygaenidae, and provides a valuable resource for exploring putative roles of the PG-enriched genes in A. yunnanensis.

Funder

The National Natural Science Foundation of China

The Yunnan Fundamental Research Project

The Yunnan Provincial Support Plan for the Cultivation of High-level Talents–Young Top-notch Talents

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference67 articles.

1. Pheromone Communication in Moths

2. Lepidopteran sex pheromones;Ando;Topics in Current Chemistry,2004

3. Genes involved in sex pheromone biosynthesis of Ephestia cautella, an important food storage pest, are determined by transcriptome sequencing;Antony;BMC Genomics,2015

4. 3 –pheromone biosynthesis in lepidopterans: desaturation and chain shortening;Bjostad,1987

5. Putative pheromone biosynthesis pathway in Maruca vitrata by transcriptomic analysis;Cha;Journal of Asia-Pacific Entomology,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3