7,8-Dihydroxyflavone protects neurons against oxygen-glucose deprivation induced apoptosis and activates the TrkB/Akt pathway

Author:

Zhou Qinxiang12,Tang Hao23,Bai Dingqun1,Kong Yuhan12

Affiliation:

1. Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

2. Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

3. Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China

Abstract

Background 7,8-dihydroxyflavone (7,8-DHF), a selective agonist of tropomyosin related kinase receptor B (TrkB), is known to exert protective effects in neurodegenerative diseases. However, the role of 7,8-DHF in TrkB signaling after ischemic stroke has remained elusive. Methods In the vitro model of ischemic stroke, we investigated the neuroprotective effect of 7,8-DHF through activation of TrkB signaling. Neurons subjected to oxygen and glucose deprivation/reperfusion were treated with the protein kinase inhibitor K252a and a knockdown of TrkB. Cell counting kit-8 (CCK-8) assay, Flow Cytometric Analysis (FACS), TdT-mediated dUTP nick end labeling (TUNEL) assay were conducted for measuring cell viability and numbers of apoptotic cells. And apoptosis-associated proteins were analyzed by Western blotting. Results Compared with the Control group, OGD/R group revealed lower cell viability by CCK-8 assay FACS and TUNEL assay showed increased rates of neuronal apoptosis. However, 7,8-DHF treatment increased cell viability and reduced neuronal apoptosis. Western blotting indicated upregulated Bax and cleaved caspase-3 and but downregulated Bcl-2 following OGD/R. Whereas 7,8-DHF treatment downregulated Bax and cleaved caspase-3 but upregulated Bcl-2. These changes were accompanied by a significant increase in the phosphorylation of TrkB and Akt following 7,8-DHF administration. However, the administration of K252a and knockdown of TrkB could alleviate those effects. Conclusion Our study demonstrates that activation of TrkB signaling by 7,8-DHF protects neurons against OGD/R injury via the TrkB/Akt pathway, which provides the evidence for the role of TrkB signaling in OGD-induced neuronal damage and may become a potential therapeutic target for ischemic stroke.

Funder

National Natural Science Foundation of China

The Chongqing Municipal Science and Technology commission

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3