Climate change favours connectivity between virus-bearing pest and rice cultivations in sub-Saharan Africa, depressing local economies

Author:

Iannella MattiaORCID,De Simone Walter,D’Alessandro PaolaORCID,Biondi Maurizio

Abstract

Aims Rice is a staple food for many countries, being fundamental for a large part of the worlds’ population. In sub-Saharan Africa, its importance is currently high and is likely to become even more relevant, considering that the number of people and the per-capita consumption are both predicted to increase. The flea beetles belonging to the Chaetocnema pulla species group (pulla group), a harmful rice pest, are an important vector of the Rice Yellow Mottle Virus, a disease which leads even to 80–100% yield losses in rice production. We present a continental-scale study aiming at: (1) locating current and future suitable territories for both pulla group and rice; (2) identifying areas where rice cultivations may occur without suffering the presence of pulla group using an Ecological Niche Modelling (ENM) approach; (3) estimating current and future connectivity among pulla group populations and areas predicted to host rice cultivations, based on the most recent land-use estimates for future agricultural trends; (4) proposing a new connectivity index called “Pest Aggression Index” (PAI) to measure the agricultural susceptibility to the potential future invasions of pests and disease; (5) quantifying losses in terms of production when rice cultivations co‐occur with the pulla group and identifying the SSA countries which, in the future inferred scenarios, will potentially suffer the greatest losses. Location Sub-Saharan Africa. Methods Since the ongoing climate and land-use changes affect species’ distributions, we first assess the impact of these changes through a spatially-jackknifed Maxent-based Ecological Niche Modelling in GIS environment, for both the pulla group and rice, in two climatic/socioeconomic future scenarios (SSP_2.45 and 3.70). We then assess the connectivity potential of the pulla group populations towards rice cultivations, for both current and future predictions, through a circuit theory-based approach (Circuitscape implemented in Julia language). We finally measure the rice production and GPD loss per country through the spatial index named “Pest Aggression Index”, based on the inferred connectivity magnitude. Results The most considerable losses in rice production are observed for Liberia, Sierra Leone and Madagascar in all future scenarios (2030, 2050, 2070). The future economic cost, calculated as USD lost from rice losses/country’s GDP results are high for Central African Republic (−0.6% in SSP_2.45 and −3.0% in SSP_3.70) and Guinea–Bissau (−0.4% in SSP_2.45 and −0.68% in SSP_3.70), with relevant losses also obtained for other countries. Main conclusions Since our results are spatially explicit and focused on each country, we encourage careful land-use planning. Our findings could support best practices to avoid the future settlement of new cultivations in territories where rice would be attacked by pulla group and the virus, bringing economic and biodiversity losses.

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3