A short stature allele enhances tolerance to zinc deficiency and translocation of zinc in barley

Author:

Saygili IbrahimORCID

Abstract

Background Zinc (Zn) content is of great importance in healthy human diet, crop productivity and stress tolerance in soils with zinc deficiency. The genes used to increase yield per unit area such as semi-dwarf 1 (sdw1) is commonly considered to reduce mineral content of grain. Methods In the present study, influence of sdw1.d, a widely used allele for short plant height in barley breeding, on zinc accumulation and tolerance to zinc deficiency were investigated. A near isogenic line of sdw1.d allele, its recurrent parent Tokak 157/37 and donor parent Triumph were grown in zinc-deficient and-sufficient hydroponic cultures. Two experiments were conducted until heading stage and physiological maturity. Results In zinc-deficient conditions, sdw1.d allele increased shoot dry weight by 112.4 mg plant−1, shoot Zn concentration by 0.9 ppm, but decreased root Zn concentration by 6.6 ppm. It did not affect grain characteristics, but increased grain Zn content. In zinc-sufficient conditions, sdw1.d allele increased shoot Zn content, and decreased root Zn content. sdw1.d did not affect grain weight but increased grain Zn concentration by about 30% under zinc-sufficient conditions. The results showed that sdw1.d allele has no negative effect on tolerance to zinc deficiency, and even promotes tolerance to zinc deficiency by more Zn translocation. It was revealed that sdw1.d allele improves Zn accumulation under both zinc-deficient and zinc-sufficient condition. The sdw1.d allele could contribute to solving the problems in plant growth and development caused by zinc-deficiency via improving tolerance to zinc-deficiency. It could also provide a better Zn biofortification.

Publisher

PeerJ

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3