Ischemic postconditioning and pinacidil suppress calcium overload in anoxia-reoxygenation cardiomyocytes via down-regulation of the calcium-sensing receptor

Author:

Zhang Lin12,Cao Song12,Deng Shengli12,Yao Gang12,Yu Tian12

Affiliation:

1. Department of Anesthesiology, Zunyi Medical College, Zunyi, Guizhou, China

2. Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, Guizhou, China

Abstract

Ischemic postconditioning (IPC) and ATP sensitive potassium channel (KATP) agonists (e.g. pinacidil and diazoxide) postconditioning are effective methods to defeat myocardial ischemia-reperfusion (I/R) injury, but their specific mechanisms of reducing I/R injury are not fully understood. We observed an intracellular free calcium ([Ca2+]i) overload in Anoxia/reoxygenation (A/R) cardiomyocytes, which can be reversed by KATP agonists diazoxide or pinacidil. The calcium-sensing receptor (CaSR) regulates intracellular calcium homeostasis. CaSR was reported to be involved in the I/R-induced apoptosis in rat cardiomyocytes. We therefore hypothesize that IPC and pinacidil postconditioning (PPC) reduce calcium overload in I/R cardiomyocytes by the down-regulation of CaSR. A/R model was established with adult rat caridomyocyte. mRNA and protein expression of CaSR were detected, IPC, PPC and KATP’s effects on [Ca2+]i concentration was assayed too. IPC and PPC ameliorated A/R insult induced [Ca2+]i overload in cardiomyocytes. In addition, they down-regulated the mRNA and protein level of CaSR as we expected. CaSR agonist spermine and KATP blocker glibenclamide offset IPC’s effects on CaSR expression and [Ca2+]i modulation. Our data indicate that CaSR down-regulation contributes to the mitigation of calcium overload in A/R cardiomyocytes, which may partially represents IPC and KATP’s myocardial protective mechanism under I/R circumstances.

Funder

Public Welfare, Ministry of Health of China

National Natural Science Foundation of China

Publisher

PeerJ

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3